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Abstract

We present a new method for proving strong lower bounds in communication com-
plexity. This method is based on the notion of the conditional information complexity

of a function which is the minimum amount of information about the inputs that has
to be revealed by a communication protocol for the function. While conditional infor-
mation complexity is a lower bound on the communication complexity, we show that it
also admits a direct sum theorem. Direct sum decomposition reduces our task to that
of proving conditional information complexity lower bounds for simple problems (such
as the and of two bits). For the latter, we develop novel techniques based on Hellinger
distance and its generalizations.

Our paradigm leads to two main results:

(1) An improved lower bound for the multi-party set-disjointness problem in the
general communication complexity model, and a nearly optimal lower bound in the
one-way communication model. As a consequence, we show that for any real k > 2,
approximating the k-th frequency moment in the data stream model requires Ω(n1−2/k)
space; this resolves a conjecture of Alon, Matias, and Szegedy [AMS99].

(2) A lower bound for the Lp approximation problem in the general communication
model; this solves an open problem of Saks and Sun [SS02]. As a consequence, we show
that for p > 2, approximating the Lp norm to within a factor of nǫ in the data stream
model with constant number of passes requires Ω(n1−4ǫ−2/p) space.

∗Part of this work was done while the first author was a student at UC Berkeley, and a visitor at IBM.
Supported by NSF ITR grant CCR-0121555.
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1 Introduction

Alice and Bob are given a bit each and they wish to compute the and of their bits by

exchanging messages that reveal as little information about their bits as possible. In this

paper we address problems of this kind, where we study the amount of information revealed

in a communication protocol. Our investigations lead to a new lower bound method in

communication complexity.

Communication complexity [Yao79] quantifies the amount of communication required

among two or more players to compute a function, where each player holds only a portion of

the function’s input. This framework has been used to solve a variety of problems in diverse

areas, ranging from circuit complexity and time-space tradeoffs to pseudorandomness—see

[KN97]. Some recent applications of communication complexity arise in the areas of massive

data set algorithms (see below) and in the design of combinatorial auctions [NS01].

A computation model that has been very useful for designing efficient algorithms for

massive data sets is the data stream model. A data stream algorithm makes a few passes

(usually one) over its input and is charged for the amount of read-write workspace it uses.

Using randomization and approximation, space-efficient data stream algorithms have been

developed for many problems [AMS99, FKSV02, GMMO00, Ind00, GGI+02, AJKS02]. The

data stream model generalizes the restrictive read-once oblivious branching program model

for which strong lower bounds are known [Bry86, Weg87]; however, since data stream algo-

rithms are allowed to be both probabilistic and approximate, proving space lower bounds

for natural problems is challenging.

Communication complexity offers a framework in which one can obtain non-trivial space

lower bounds for data stream algorithms. The relationship between communication com-

plexity and the data stream model is natural—the workspace of the data stream algorithm

corresponds to the amount of communication in a suitable communication protocol. Lower

bounds for data stream algorithms have been shown both via generalization of existing

methods (e.g., [AMS99]) and by the invention of new techniques (e.g., [SS02]).

1.1 Results

We develop a novel and powerful method for obtaining lower bounds for randomized com-

munication complexity. We use this method to derive lower bounds for communication

complexity problems arising in the data stream context.

(1) In the multi-party set-disjointness problem disjn,t, there are t players and each player

is given a subset of [n] with the following promise: either the sets are pairwise disjoint

(No instances) or they have a unique common element but are otherwise disjoint (Yes
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instances). We show that the randomized communication complexity of this problem is

Ω(n/t2). Previously, Alon, Matias, and Szegedy[AMS99] had proved an Ω(n/t4) bound,

extending the Ω(n) bound for two-party set-disjointness [KS92, Raz92]. The best upper

bound for this problem is Õ(n/t) (a simple simultaneous messages protocol is described in

[BJKS02]). In the one-way model (where each player sends exactly one message to the next

player) we show a nearly optimal lower bound of Ω(n/t1+ǫ) for arbitrarily small ǫ.

Our lower bound result in the one-way model implies the following: we obtain the first

super-logarithmic (in fact, nΩ(1)) space lower bounds for approximating the k-th frequency

moment Fk for any real k > 2 in the data stream model1. This resolves the conjecture of

Alon, Matias, and Szegedy [AMS99], who showed an Ω(n1−5/k) lower bound for constant

factor approximation of Fk, k > 5. We show that approximating Fk, k > 2, to within

constant factors requires Ω(n1−2/k) space. For k > 2, the best known space upper bound

for Fk is Õ(n1−1/k) [AMS99]. Since our lower bound is essentially optimal for the one-way

model, closing this gap would require either a better algorithm or a different lower bound

method for the frequency moment problem.

(2) In the L∞ promise problem, Alice and Bob are given integers x,y ∈ [0, m]n, respec-

tively. The promise is that either |x − y|∞ ≤ 1 (Yes instances) or |x − y|∞ ≥ m (No

instances). We show that the randomized communication complexity of this problem is

Ω(n/m2). This solves the open problem of Saks and Sun [SS02], who showed this bound for

the restricted one-way model.

A consequence of this result is a lower bound for approximating Lp distances for p > 2:

approximating the Lp distance between n-dimensional vectors to within a factor of nǫ requires

Ω(n1−4ǫ−2/p) space in the data stream model for any constant number of passes over the input.

This bound is optimal for p = ∞. The communication complexity lower bound of [SS02]

gives a similar bound for the one-pass data stream model.

1.2 Methodology

Our method proceeds by first decomposing the original function into simpler “primitive”

functions, together with an appropriate “composer” function. For example, the two-party

set-disjointness function can be written in terms of n two-bit and functions, one for each

coordinate. By computing each and function separately, we trivially obtain a protocol to

compute disjointness. The direct sum question for communication protocols [KRW95] asks

whether there is a protocol with considerably less communication. We consider a related

question, namely, the direct sum property for the information content of the transcripts

1For a finite sequence a = a1, a2, . . ., where each element belongs to [n], and for j ∈ [n], let fj(a) denote
the number of times j occurs in a. The k-th frequency moment Fk(a) is defined as

∑

j∈[n] f
k
j (a).
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of the protocol. We formalize this idea through the notion of information cost of a com-

munication protocol, which measures the amount of information revealed by the transcript

about the inputs. The information complexity of a function is the minimum information

cost incurred by any protocol that computes the function; this measure is a lower bound

on the communication complexity of a function. This concept was recently introduced by

Chakrabarti, Shi, Wirth, and Yao [CSWY01] in the context of simultaneous messages com-

munication complexity; it is also implicit in the works of Ablayev [Abl96] and Saks and Sun

[SS02] (see also [BCKO93]). We give an appropriate generalization of information complex-

ity for general communication models; the highlight of our generalization is that it admits a

direct sum theorem. Thus, any correct protocol for disjointness must reveal in its transcript

enough information to compute each of the constituent and functions. This reduces our

task to proving lower bounds for the and function.

In carrying out an information complexity lower bound, we would like to create an input

distribution that is intuitively hard for any communication protocol. It turns out that for

many natural examples, these distributions necessarily have a non-product structure. This

is one of the main obstacles to extending the direct sum methodology of [CSWY01] to gen-

eral communication protocols; their work addresses the more restrictive case of simultaneous

message protocols. In the proof technique of [SS02], the issue of such non-product distribu-

tions causes significant complications; they resolve this difficulty for the one-way model by

using tools from information theory and Fourier analysis. We approach this problem by ex-

pressing the non-product distribution as a convex combination of product distributions; this

approach has been previously considered for other problems such as the distributional com-

plexity of set-disjointness [Raz92] and the parallel repetition theorem [Raz98]. The novelty

of our method lies in extending the definition of information complexity to allow conditioning

so that it admits a direct sum decomposition.

The direct sum theorem reduces our task to proving information complexity lower bounds

for primitive (single coordinate) functions. Existing methods for communication complexity

seem unsuitable for this task, since randomized protocols can use many bits of communica-

tion but reveal little information about their inputs. Our solution is based on considering

probability distributions induced on transcripts, and relating these distributions via several

statistical distance measures. In particular, the Hellinger distance [LY90], extensively stud-

ied in statistical decision theory, plays a crucial role in the proofs. We derive new properties

of the Hellinger distance between distributions arising in communication complexity. In par-

ticular, we show that it satisfies a “cut-and-paste” property and an appropriate Pythagorean

inequality; these are crucial to the proofs of the one-coordinate lower bounds.

Our result for the multi-party set-disjointness in the general communication complexity
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model is not tight. This is due to a limitation in our proof technique and can be attributed

to the fact that the square of the Hellinger distance satisfies only a weak form of triangle

inequality. This leads us to consider generalizations of the Hellinger distance, which, com-

bined with the Markovian structure of one-way protocols, allows us to derive near-triangle

inequalities. To the best of our knowledge, this is the first proof technique for multi-party

one-way protocols—a model particularly relevant to data stream computations.

Related developments. By using the direct sum paradigm of this work, together with

sharper analytical methods to obtain information complexity lower bounds for “primitive”

functions, Chakrabarti, Khot, and Sun [CKS03] have obtained essentially optimal bounds

for the communication complexity of the multi-party set-disjointness problem in the gen-

eral and one-way communication models. Jayram [unpublished work, 2003] has shown

that the information complexity methodology of this work yields lower bounds for distri-

butional communication complexity as well. Jayram, Kumar, and Sivakumar [JKS03] have

extended the methods of this paper to obtain new separations between nondeterministic/co-

nondeterministic communication complexity and two-sided error randomized communication

complexity.

Organization. Section 2 contains the preliminaries. In Section 3, we derive the lower

bounds for data stream algorithms by applying the communication complexity lower bounds.

In Section 4, we introduce the notions of information complexity and conditional informa-

tion complexity. In Section 5, we present the direct sum theorem for conditional information

complexity, and illustrate it via the set-disjointness problem in the two-party (general) com-

munication complexity model. In Section 6, we describe the connection between communi-

cation complexity and “information statistics,” a term that we coin to loosely describe the

interplay between information theory and distances between probability distributions. As an

illustration of our techniques, we prove an Ω(1) lower bound on the information complexity

of the and of two bits. Section 7 deals with the multi-party set-disjointness problem, and

presents lower bounds in the general and one-way communication models. Section 8 contains

the communication lower bound for the L∞ promise problem. The Appendix contains results

about various statistical notions of divergences between probability distributions that we use

in the paper, including some technical lemmas that we prove.
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2 Preliminaries

Communication complexity. In the two-party randomized communication complexity

model [Yao79], two computationally all-powerful probabilistic players, Alice and Bob, are

required to jointly compute a function f : X × Y → Z. Alice is given x ∈ X , Bob is given

y ∈ Y , and they exchange messages according to a shared protocol Π. For a fixed input pair

(x, y), the random variable Π(x, y) denotes the message transcript obtained when Alice and

Bob follow the protocol Π on inputs x and y (the probability is over the coins of Alice and

Bob). A protocol Π is called a δ-error protocol for f , if there exists a function Πout such that

for all input pairs (x, y), Pr[Πout(Π(x, y)) = f(x, y)] ≥ 1− δ. The communication cost of Π,

denoted by |Π|, is the maximum length of Π(x, y) over all x, y, and over all random choices

of Alice and Bob. The δ-error randomized communication complexity of f , denoted Rδ(f),

is the cost of the best δ-error protocol for f .

Communication complexity can also deal with functions over a partial domain: f : L →
Z, L ⊆ X × Y . In this case, we will assume that any protocol for f is well defined for any

input pair (x, y), even if this pair does not belong to the domain L. (This can be achieved

by letting the players transmit the special symbol ‘*’ and halt the protocol whenever they

cannot continue executing the protocol.) Also, wlog., we will assume the protocol always

produces transcripts of the same length.

The model can be easily generalized to handle an arbitrary number of players t, who

compute a function f : X1 × · · · × Xt → Z. Here, the i-th player is given xi ∈ Xi, and

the players exchange messages according to some fixed protocol. A restricted model of

communication is the one-way communication model [PS84, Abl96, KNR99], in which the i-

th player sends exactly one message throughout the protocol to the (i+1)-st player (we define

t + 1 = 1). We denote the δ-error one-way communication complexity of f by R1-way
δ (f).

All our lower bounds will be proved in the following stronger model: all messages are

written on a shared “blackboard,” which is visible to all the players. In the one-way model,

this is tantamount to saying that the players write their messages in turn, from player 1 to

player t, where each message could depend on all previous messages written.

Notation. Throughout the paper we denote random variables in upper case, and vectors

in boldface. For a random variable X and a distribution ν, we use X ∼ ν to denote that X

is distributed according to ν; sometimes, we also write X ∼ Y , when X and Y are random

variables, to denote that X has the same distribution as Y . Let µ be a distribution on a

Cartesian product of sets and let the vector random variable X ∼ µ. We say that µ is a

product distribution if the components of X are mutually independent of each other. For

example, the distribution µ = νn obtained by taking n independent copies of ν is a product
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distribution. For a random variable φ(z) on a set Ω, we write φz to denote the distribution

of φ(z), i.e., φz(ω) = Pr[φ(z) = ω], for every ω ∈ Ω. We denote by [n] the set {1, . . . , n},
and by [0, m] the set {0, . . . , m}. All logarithms are to the base 2.

Information theory. Let µ be a distribution on a finite set Ω and let X ∼ µ. The entropy

of X is defined by

H(X) =
∑

ω∈Ω

µ(ω) log
1

µ(ω)
.

We also refer to H(X) as the entropy of µ, the distribution of X. The conditional entropy

of X given Y is

H(X | Y ) =
∑

y

H(X | Y = y) Pr(Y = y),

where H(X | Y = y) is the entropy of the conditional distribution of X given the event

{Y = y}. The joint entropy of two random variables X and Y is the entropy of their joint

distribution and is denoted H(X, Y ).

The mutual information between X and Y is I(X ; Y ) = H(X) − H(X | Y ) = H(Y ) −
H(Y | X). We also refer to I(X ; Y ) as the mutual information between the distributions

of X and Y . The conditional mutual information between X and Y conditioned on Z is

I(X ; Y | Z) = H(X | Z) − H(X | Y, Z). Equivalently, it can be defined as

I(X ; Y | Z) =
∑

z

I(X ; Y | Z = z),

where I(X ; Y | Z = z) is the mutual information between the conditional distributions of

X and Y given the event {Z = z}.
We use several basic properties of entropy and mutual information in the paper, which

we summarize below (proofs can be found in Chapter 2 of [CT91]).

Proposition 2.1 (Basic properties of entropy). Let X, Y be random variables with

ranges SX , SY .

1. 0 ≤ H(X) ≤ log |SX |.

2. I(X ; Y ) ≥ 0.

3. Subadditivity: H(X, Y ) ≤ H(X) + H(Y ); equality iff X and Y are independent.

4. Subadditivity of conditional entropy: H(X, Y | Z) ≤ H(X | Z) + H(Y | Z); equality iff

X and Y are independent conditioned on Z.

5. Data processing inequality: if random variables X and Z are conditionally independent

given Y , then I(X ; Y | Z) ≤ I(X ; Y ).
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3 Data stream lower bounds

3.1 Frequency moments

Given a finite sequence of integers a1, a2, . . . ,∈ [n], the frequency of j ∈ [n] is fj = |{i | ai =

j}|. For k ≥ 0, the k-th frequency moment Fk(a) is defined as
∑n

j=1 fk
j .

For k = 2, Alon, Matias, and Szegedy [AMS99] presented a data stream algorithm that

estimates F2 to within a multiplicative error of 1 ± ǫ using space which is logarithmic in n

and polynomial in 1/ǫ. For k ≥ 3 their algorithms use space O(n1−1/k) (and polynomial

in 1/ǫ). They also showed that approximating Fk to within constant factors requires space

Ω(n1−5/k) in the data stream model. This implies that for k > 5, approximating Fk requires

polynomial space.

We show that approximating Fk requires space Ω(n1−(2+γ)/k) for arbitrarily small γ > 0.

This shows that for any k > 2, approximating Fk requires polynomial space, affirming a

conjecture of Alon, Matias, and Szegedy. In order to prove the space lower bound we will

adapt the reduction of [AMS99] to our case.

Theorem 3.1. For any k > 2 and γ > 0, any (one-pass) data stream algorithm that ap-

proximates Fk to within a constant factor with probability at least 3/4 requires Ω
(

n1−(2+γ)/k
)

space. For the same problem, any data stream algorithm that makes a constant number of

passes requires Ω
(

n1−3/k
)

space.

Proof. Let A be an s-space data stream algorithm that approximates Fk to within 1 ± ǫ

multiplicative error with confidence 1 − δ, where 0 < δ < 1/4. We use A to construct a

δ-error one-way protocol for disjn,t, where t = ((1 + 3ǫ)n)1/k.

Let S1, . . . , St ⊆ [n] be the input sets for the t players. The sets translate into an instance

of Fk (a data stream) in the obvious way: first all the elements of S1, then all the elements

of S2, and so forth.

The protocol simulates the algorithm A as follows: the first player starts the execution

by running A on the elements of S1. When A has finished processing all elements of S1,

she transmits the content of the memory of A (O(s) bits) to the second player. The second

player resumes the execution of A on her part of the stream (the elements of S2) and sends

the memory of A to the third player. At the end of the execution, Player t obtains B, the

output of A. If B ≤ (1 + ǫ)n, then Player t sends to Player t + 1 the bit “0” (meaning the

sets are disjoint) and otherwise, she sends the bit “1” (meaning the sets intersect).

Clearly, the protocol is one-way. We next prove that the bit Player t sends to Player

t+1 is indeed disjn,t with probability at least 1− δ. If the input sets are disjoint, then each

element has a frequency of at most one in the stream, and therefore Fk is at most n. On
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the other hand, if the sets are uniquely intersecting, then there is at least one element whose

frequency is t, and therefore Fk is at least tk = (1 + 3ǫ)n. Since A produces an answer B

that, with probability at least 1 − δ, is in the interval ((1 − ǫ)Fk, (1 + ǫ)Fk), it follows that

if the sets are disjoint, with probability 1 − δ, B ≤ n(1 + ǫ), and if the sets are uniquely

intersecting, then with probability 1−δ, B ≥ (1− ǫ)(1+3ǫ)n > (1+ ǫ)n. Thus, our protocol

is correct on any input with probability at least 1 − δ.

We next derive a lower bound on s. Note that the protocol uses O(s(t− 1) + 1) = O(st)

bits of communication. By Theorem 7.1, part (2), this communication is at least Ω(n/t1+γ) =

Ω(n1−(1+γ)/k). Therefore, s = Ω(n1−(2+γ)/k).

The proof for a constant number of passes is similar. The main difference is that now

we use an ℓ-pass s-space data stream algorithm A for Fk to construct a t-player multi-round

protocol for disjn,t. In the end of each pass, the last player sends the content of the memory

back to the first player. Thus the total communication is ℓst. Here we use the lower bound

for the general communication complexity of disjn,t (Theorem 7.1, part (1)) to derive the

data stream space lower bound.

3.2 Lp distances

Theorem 3.2. For any p > 0 (including p = ∞) and for ǫ such that 0 < ǫ < 1
4
− 1

2p
, any data

stream algorithm that makes a constant number of passes over its input and approximates

the Lp distance between two vectors in [0, m]n, to within a factor of nǫ with probability at

least 3/4 requires Ω(n1−4ǫ−2/p) space.

Proof. Consider first the problem of approximating the L∞ distance between two vectors in

the communication complexity model. That is, Alice is given x ∈ [m]n and Bob is given

y ∈ [m]n, and they are required to find a value B s.t. (1/nǫ)‖x − y‖∞ ≤ B ≤ nǫ‖x − y‖∞.

Clearly, any protocol to solve this problem is immediately a protocol to solve the L∞ promise

problem for any m > n2ǫ: distinguishing between the cases ‖x−y‖∞ ≤ 1 and ‖x−y‖∞ = m.

Therefore, by Theorem 8.1, this problem requires Ω(n1−4ǫ) communication.

We now translate this bound to the communication complexity of approximating the Lp

distance. Using the relationship between norms, we have that

‖x − y‖∞ ≤ ‖x − y‖p ≤ n1/p‖x − y‖∞,

or equivalently, the quantity n−1/(2p)‖x−y‖p approximates ‖x−y‖∞ to within a (multiplica-

tive) factor of n1/(2p). Thus, approximating the Lp norm to within a factor of nǫ implies an

nǫ+1/(2p)-approximation to L∞. Using the lower bound for approximating the L∞ distance,

we obtain an Ω(n1−4ǫ−2/p) communication lower bound for approximating the Lp distance to

within a factor of nǫ.
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Any data stream algorithm that approximates the Lp distance to within nǫ error and

with confidence 3/4 yields a communication complexity protocol that approximates the Lp

distance with the same error and confidence and whose communication cost is at most the

space used by the data stream algorithm. In this protocol, Alice runs the data stream

algorithm on her vector, transmits the content of the memory of the algorithm to Bob, and

Bob completes the execution by running the algorithm on his vector. Thus, the space lower

bound for Lp approximation in the data stream model is also Ω(n1−4ǫ−2/p).

4 Information complexity

In this section we define the fundamental notions of information measures associated with

communication protocols alluded to in the introduction. As the main illustration of our

definitions and techniques, we consider the two-party set-disjointness problem. We will

continue the illustration in Section 5 and Section 6, resulting in a simple proof of the Ω(n)

lower bound for the set-disjointness problem.

Our lower bound method is built on an information-theoretic measure of communication

complexity, called information complexity, defined with respect to a given distribution over

the inputs to the function; our definitions generalize similar notions that were considered

previously [CSWY01, BCKO93, Abl96, SS02]. The discussion that follows is in the frame-

work of two-party communication complexity; the generalization to an arbitrary number of

players is straightforward.

Fix a set Ln ⊆ X n × Yn of legal inputs and a function f : Ln → {0, 1}.
In the set-disjointness problem, Alice and Bob hold, respectively, the characteristic

vectors x and y of two subsets of [n]. disj(x,y) is defined to be 1 iff x ∩ y 6= ∅.
Informally, information cost is the amount of information one can learn about the inputs

from the transcript of messages in a protocol on these inputs. Formally it is defined as

follows:

Definition 4.1 (Information cost of a protocol). Let Π be a randomized protocol

whose inputs belong to Ln. Let µ be a distribution on Ln, and suppose (X,Y) ∼ µ. The

information cost of Π with respect to µ is defined as I(X,Y ; Π(X,Y)).

Definition 4.2 (Information complexity of a function). The δ-error information com-

plexity of f with respect to a distribution µ, denoted ICµ,δ(f), is defined as the minimum

information cost of a δ-error protocol for f with respect to µ.

Proposition 4.3. For any distribution µ and error δ > 0, Rδ(f) ≥ ICµ,δ(f).
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Proof. Let Π denote the best δ-error protocol for f in terms of communication. Let (X,Y) ∼
µ. Thus, Rδ(f) = |Π| ≥ H(Π(X,Y)) ≥ I(X,Y ; Π(X,Y)) ≥ ICµ,δ(f).

Suppose Ln = Ln, for some L ⊆ X × Y , and suppose f : Ln → {0, 1} can be expressed

in terms of a simpler “primitive” h : L → {0, 1} applied to each coordinate of the input

pair (x,y). (This notion will formalized later.) If f depends (say, symmetrically) on the

primitive in each coordinate, and if the distribution µ on Ln is the product of independent

copies of a distribution ν on L, then any protocol for f must implicitly solve each instance

of the primitive h. Thus, one can hope to show that ICµ,δ(f) ≥ n · ICν,δ(h), i.e., a direct

sum property for information complexity.

The main technical obstacle to proving this result is that the distribution µ is not nec-

essarily a product distribution on X n × Yn. This is because ν need not be a product

distribution on X × Y (although µ is the product of n copies of ν). In fact, for set dis-

jointness, it becomes essential to consider non-product distributions to obtain an Ω(n) lower

bound [BFS86]. To handle this, we will use the fact that µ may be written as a convex

combination µ =
∑

d∈K κdµd of product distributions µd, where K is some index set. Such

a decomposition, in general, is not unique, and we will choose one where the entropy of the

collection of κd’s, viewed as a distribution κ on the index set K, is as small as possible.

One way to realize µ is as follows. If D ∼ κ, then D “sets” µ = µd with probability

κd. Therefore, conditioned on D, µ is a product distribution, that is, if (X,Y) ∼ µ, then

conditioned on D, X and Y are independent of each other. We will call µ a mixture of

distributions {µd}d∈K and say that κ partitions µ. In the above discussion, where ν is

non-product and µ = νn, we will first express ν as a mixture partitioned by some λ. Then,

clearly κ = λn partitions µ in a natural way. A useful consequence is that the coordinates

{(Xj, Yj)}j∈[n] are mutually independent of each other, and this continues to hold even when

conditioned on D ∼ κ.

For set-disjointness, we will use the non-product distribution ν given by ν(0, 0) = 1/2,

ν(0, 1) = ν(1, 0) = 1/4. Let λ, denoting the uniform distribution on {a,b}, partition

ν as follows. Let D ∼ λ. If D = a, then let X = 0 and let Y be a uniform element of

{0, 1}; if D = b, then let Y = 0 and let X be a uniform element of {0, 1}. It is clear

that conditioned on D, X and Y are independent, and (X, Y ) ∼ ν.

Definition 4.4 (Conditional information cost). Let Π be a randomized protocol whose

inputs belong to Ln. Let µ be a mixture of product distributions on Ln, partitioned by κ.

Suppose (X,Y) ∼ µ and D ∼ κ. The conditional information cost of Π with respect to

(µ, κ) is defined as I(X,Y ; Π(X,Y) | D).

Definition 4.5 (Conditional information complexity). The δ-error conditional infor-

mation complexity of f with respect to (µ, κ), denoted by ICµ,δ(f | κ), is defined as the

11
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minimum conditional information cost of a δ-error protocol for f with respect to (µ, κ).

Proposition 4.6. If κ partitions µ, then ICµ,δ(f) ≥ ICµ,δ(f | κ).

Proof. Let Π be a protocol whose information cost equals ICµ,δ(f). Let D ∼ κ and

(X,Y) ∼ µ. Since Π(X,Y) is conditionally independent of D given X,Y (because the

private coins of Π are independent of D), the data processing inequality implies: ICµ,δ(f) =

I(X,Y ; Π(X,Y)) ≥ I(X,Y ; Π(X,Y) | D) ≥ ICµ,δ(f | κ).

Thus, by Proposition 4.3, lower bounds for conditional information complexity yield lower

bounds for randomized communication complexity.

5 A direct sum theorem for conditional information

complexity

We now turn to the development of the direct sum theorem for the conditional information

complexity of decomposable functions. Let Π be a δ-error protocol for f : Ln → {0, 1},
for some L ⊆ X × Y , and fix a distribution ν on L partitioned by λ. Let µ = νn and

κ = λn; first, we show that when the inputs are distributed according to the distribution

µ, the information cost of the protocol Π can be decomposed into information about each

of the coordinates. This reduces our task to proving lower bounds for the coordinate-wise

information-theoretic quantities. Next, we formalize the notion of decomposing a function

into primitive functions. By imposing a further restriction on µ, we then show that each

coordinate-wise information quantity itself is lower bounded by the information complexity

of the primitive function. This will result in the direct sum theorem.

Lemma 5.1 (Information cost decomposition lemma). Let Π be a protocol whose

inputs belong to Ln, for some L ⊆ X ×Y. Let ν be a distribution on L partitioned by λ. Let

(X,Y) ∼ µ = νn, and D ∼ κ = λn (which partitions µ). Then, I(X,Y ; Π(X,Y) | D) ≥
∑

j I(Xj ,Yj ; Π(X,Y) | D).

Proof. Abbreviating Π(X,Y) by Π, note that by definition, I(X,Y ; Π | D) = H(X,Y |
D) − H(X,Y | Π,D). Now, observe that H(X,Y | D) =

∑

j H(Xj,Yj | D), since the pairs

(Xj,Yj), j ∈ [n], are independent of each other conditioned on D. By the subadditivity

of conditional entropy, H(X,Y | Π,D) ≤ ∑

j H(Xj,Yj | Π,D). Thus I(X,Y ; Π | D) ≥
∑

j I(Xj ,Yj ; Π | D).

Definition 5.2 (Decomposable functions). f : Ln → {0, 1} is g-decomposable with

primitive h if it can be written as f(x,y) = g(h(x1,y1), . . . , h(xn,yn)), for some functions

12
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h : L → {0, 1} and g : {0, 1}n → {0, 1}. Sometimes we simply write f is decomposable with

primitive h.

It is easy to see that set-disjointness is or-decomposable with primitive and:

disj(x,y) =
∨

i∈[n](xi ∧ yi). Here L = {0, 1}2, h = and, g = or.

Other examples of decomposable functions are the following.

(1) Inner product : Again L = {0, 1}2 and h is the and of two bits; g is the xor of n bits.

(2) L∞ promise problem: Here L = [0, m]2, for some m, h(x, y) = 1 if |x− y| ≥ m and 0

if |x − y| ≤ 1; g is the or of n bits.

Now, we would like to lower bound the information about each coordinate by the con-

ditional information complexity of h, that is, I(Xj,Yj ; Π | D) ≥ ICν,δ(h | λ), for each j.

We achieve this by presenting, for each j, a family of protocols for h that use a protocol

Π for f as a subroutine, and whose average information cost with respect to ν is exactly

I(Xj,Yj ; Π | D). To facilitate this, we will further restrict the distribution µ that we use

to be a “collapsing distribution” of f .

Definition 5.3 (Embedding). For a vector w ∈ Ln, j ∈ [n], and u ∈ L, we define

embed(w, j, u) to be the n-dimensional vector over L, whose i-th component, 1 ≤ i ≤ n,

is defined as follows: embed(w, j, u)[i] = wi if i 6= j, and embed(w, j, u)[j] = u. (In other

words, we replace the j-th component of w by u, and leave the rest intact.)

Definition 5.4 (Collapsing distribution). Suppose f : Ln → {0, 1} is g-decomposable

with primitive h : L → {0, 1}. We call (x,y) ∈ Ln a collapsing input for f , if for every

j ∈ [n], f(embed(x, j, u), embed(y, j, v)) = h(u, v). We call a distribution µ collapsing for

f , if every (x,y) in the support of µ is a collapsing input.

Since our distribution ν for set-disjointness never places any mass on the pair (1, 1), it

follows that for every (x,y) in the support of νn, and for every j ∈ [n],
∨

i6=j(xi∧yi) =

0. Therefore, for every (u, v) ∈ {0, 1}2, disj(embed(x, j, u), embed(y, j, v)) = u ∧ v.

Informally, a collapsing input (x,y) projects f to h in each coordinate. By fixing one

such (x,y), any protocol Π for f can be used to derive n different protocols for h: the j-th

protocol is obtained by simply running Π on (embed(x, j, u), embed(y, j, v)), where (u, v)

is the input to the protocol. Clearly, each of these protocols has the same error as Π. A

collapsing distribution allows us to argue that Π is in fact the “sum” of n protocols for h.

Lemma 5.5 (Reduction lemma). Let Π be a δ-error protocol for a decomposable function

f : Ln → {0, 1} with primitive h. Let µ = νn be a collapsing distribution for f , and suppose

λ partitions ν (and κ = νn partitions µ). Let (X,Y) ∼ µ and D ∼ µ. Then for all j,

I(Xj,Yj ; Π(X,Y) | D) ≥ ICν,δ(h | λ).

13
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Proof. Let D−j denote all except the j-th coordinate of D. Since D = (Dj ,D−j), we have

I(Xj,Yj ; Π(X,Y) | D) = Ed[I(Xj,Yj ; Π(X,Y) | Dj,D−j = d)], where d is indexed by

[n] \ {j}. We will show that each term is the information cost of a δ-error protocol Πj,d for

h, which will prove the lemma.

The protocol Πj,d has j and d “hardwired” into it. On input pair (u, v), Alice and Bob

realize random variables (Ui,Vi), for every i 6= j, by sampling (independently of each other

using private coin tosses) from the product distribution νdi
; let (ui, vi) be the value produced

thus. Next, Alice sets uj = u, Bob sets vj = v, and they simulate Π(u,v). Since νn is a

collapsing distribution of f , we have f(u,v) = h(u, v). Letting Πj,d output whatever Π

outputs, it follows that Πj,d is a δ-error protocol for h.

To complete the proof, we show that the conditional information cost of Πj,d with respect

to (ν, λ),

I(U, V ; Πj,d(U, V ) | D) = I(Xj,Yj ; Π(X,Y) | Dj ,D−j = d). (1)

Let Πtrans(x, y, a, b) denote the fixed transcript produced on input (x, y) when the internal

coin tosses of Alice and Bob are a and b, respectively. If (A, B) denotes the random variables

corresponding to the private coin tosses, then Πj,d(U, V ) = Πtrans(U,V, A, B), where Uj =

U and Vj = V . Equation (1) follows if the joint distribution of the random variables

(Xj,Yj,Dj, Πtrans(X,Y, A, B)), conditioned on the event D−j = d, is identical to the joint

distribution of (U, V, D, Πtrans(U,V, A, B)). This can be verified easily and we omit the

tedious probability statements.

Theorem 5.6 (Direct sum theorem). Let f : Ln → {0, 1} be a decomposable function

with primitive h. Let µ = νn be a collapsing distribution for f . Let λ partition ν so that

κ = λn partitions νn. Then, ICµ,δ(f | κ) ≥ n · ICν,δ(h | λ).

Proof. Let Π be the optimal δ-error protocol for f in terms of conditional information cost.

We have ICµ,δ(f | µ) = I(X,Y ; Π(X,Y) | D), where D ∼ κ. By the information cost

decomposition lemma (Lemma 5.1), this is at least
∑

j I(Xj,Yj ; Π(X,Y) | D). By the

reduction lemma (Lemma 5.5), this is at least n · ICν,δ(h | λ).

Corollary 5.7 (of Prop. 4.3, Prop. 4.6, and Theorem 5.6). With the notation and

assumptions of Theorem 5.6, Rδ(f) ≥ ICµ,δ(f) ≥ ICµ,δ(f | κ) ≥ n · ICν,δ(h | λ).

For set-disjointness, Rδ(disj) ≥ ICµ,δ(disj | κ) ≥ n · ICν,δ(and | λ). Thus it

suffices to show an Ω(1) lower bound for the conditional information complexity of

the 1-bit function and.

14
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6 Information complexity lower bound for primitives

The direct sum theorem of the foregoing section effectively recasts the task of proving ran-

domized communication complexity lower bounds for many functions. Namely, the goal now

is to prove conditional information complexity lower bounds for “primitive functions,” where

the communicating parties are given inputs from a small domain, and wish to check a fairly

simple predicate. In this section, we illustrate how we accomplish this by proving an Ω(1)

lower bound for the conditional information complexity of the and function with respect to

(ν, λ). In doing so, we develop some basic connections between communication complexity,

statistical distance measures, and information theory; these connections will be later used in

the proofs of our main results on multi-party set-disjointness and the L∞ problem. To aid

the exposition, we state and use various Lemmas and Propositions; their proofs are collected

in Section 6.1 and Appendix A.

We will show that for any randomized protocol P that correctly computes the and

function, an Ω(1) lower bound holds on I(U, V ; P (U, V ) | D) with respect to (ν, λ), and

where D ∼ λ. We assume that for every input (u, v) ∈ {0, 1}2, the protocol P computes

and(u, v) correctly with probability at least 1 − δ.

Let Z denote a random variable distributed uniformly in {0, 1}. Using the definition of

the distribution ν and expanding on values of D, we have

I(U, V ; P (U, V ) | D) =
1

2
[I(U, V ; P (U, V ) | D = 0) + I(U, V ; P (U, V ) | D = 1)]

=
1

2
[I(Z; P (0, Z)) + I(Z; P (Z, 0))] (2)

(since (V | D = 0) ∼ Z and (U | D = 1) ∼ Z).

Notice that the mutual information quantities in Equation (2) are of the form I(Z; φ(Z)),

where Z is uniformly distributed in {0, 1} and φ(z) is a random variable, for each z ∈ {0, 1}.
The following lemma provides an important passage from such quantities (and hence from

information complexity) to metrics on probability distributions. The advantage of working

with a metric is that it allows us the use of triangle inequality when needed; furthermore, as

will be evident from Lemmas 6.3 and 6.4 later, Hellinger distance turns out to be a natural

choice in analyzing distributions of transcripts of communication protocols.

Definition 6.1 (Hellinger distance). The Hellinger distance between probability distri-

butions P and Q on a space Ω is defined by h2(P, Q) = 1−∑ω∈Ω

√

P (ω)Q(ω). (Note. The

above equation defines the square of the Hellinger distance.)

For the discussion below, recall our notation that for a random variable φ(z) on a set Ω,

we write φz to denote the distribution of φ(z).
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Lemma 6.2. Let φ(z1) and φ(z2) be two random variables. Let Z denote a random variable

with uniform distribution in {z1, z2}. Then, I(Z; φ(Z)) ≥ h2(φz1
, φz2

).

Combining Equation (2) and Lemma 6.2, we obtain:

I(U, V ; P (U, V ) | D) ≥ 1

2
(h2(P00, P01) + h2(P00, P10)) (Lemma 6.2)

≥ 1

4
(h(P00, P01) + h(P00, P10))

2 (Cauchy–Schwarz)

≥ 1

4
h2(P01, P10) (Triangle inequality)

At this point, we have shown that the conditional information cost of P with respect to

(ν, λ) is bounded from below by h2(P01, P10). This leads us to the task of lower bounding the

Hellinger distance between P01 and P10. Of the four distributions P00, P01, P10, and P11 on

the set of possible transcripts of P , it is natural to expect P11 to be quite different from the

rest since and(1, 1) = 1, while the value of and on the other three input pairs is 0. Given

that and(0, 1) and and(1, 0) are both 0, it is not clear why these two distributions (on the

set of possible transcripts of P ) should be far apart. This is where the “rectangular” nature

of the transcripts of communication protocols comes in. We will show that the transcript

distributions on various inputs satisfy two important properties, which may be considered

to be analogs of the following statement about deterministic communication protocols: if

Π(x, y) = τ = Π(x′, y′), then Π(x′, y) = τ = Π(x, y′).

Lemma 6.3 (Cut and paste lemma). For any randomized protocol Π and for any x, x′ ∈
X and y, y′ ∈ Y, h(Πxy, Πx′y′) = h(Πxy′, Πx′y).

Lemma 6.4 (Pythagorean lemma). For any randomized protocol Π and for any x, x′ ∈ X
and y, y′ ∈ Y, h2(Πxy, Πx′y) + h2(Πxy′, Πx′y′) ≤ 2 h2(Πxy, Πx′y′).

Note. Lemma 6.4 is not used in the lower bound for and; it is used only in Section 8.

Lemma 6.3 implies that h2(P01, P10) = h2(P00, P11), so we have:

I(U, V ; P (U, V ) | D) ≥ 1

4
h2(P01, P10)

=
1

4
h2(P00, P11) (Lemma 6.3)

The final point is that since and(0, 0) 6= and(1, 1), we expect the distributions P00 and

P11 to be far from each other.

Proposition 6.5. For any δ-error protocol Π for a function f , and for any two input pairs

(x, y) and (w, z) for which f(x, y) 6= f(w, z), h2(Πxy, Πwz) ≥ 1 − 2
√

δ.
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We now have:

ICν,δ(and | λ) ≥ I(U, V ; P (U, V ) | D)

≥ 1

4
h2(P00, P11)

≥ 1

4
(1 − 2

√
δ). (Proposition 6.5)

To sum up, we have shown:

Theorem 6.6. Rδ(disj) ≥ ICµ,δ(disj) ≥ ICµ,δ(disj | κ) ≥ n · ICν,δ(and | λ) ≥ n
4
(1− 2

√
δ).

6.1 Statistical structure of randomized communication protocols

We begin with an elementary proposition that shows that if f(x, y) 6= f(w, z), then the

distributions on the transcripts of any protocol that correctly computes f must look very

different on these two input pairs.

Proposition 6.7 (Proposition 6.5 restated). For any δ-error protocol Π for a function

f , and for any two input pairs (x, y) and (w, z) for which f(x, y) 6= f(w, z), h2(Πxy, Πwz) ≥
1 − 2

√
δ.

Proof. In the proof we use the well-known total variation distance between distributions:

Definition 6.8 (Total variation distance). The total variation distance between two

distributions P and Q over a domain Ω is defined by

V(P, Q) = max
Ω′⊆Ω

(P (Ω′) − Q(Ω′)) =
1

2

∑

ω∈Ω

|P (ω)− Q(ω)|.

The proof proceeds in two steps: we first lower bound the total variation distance between

Πxy and Πwz and then use a connection between the total variation distance and the Hellinger

distance.

Let T be the set of all transcripts τ on which Π outputs f(x, y) (i.e., Πout(τ) = f(x, y)).

Since Π outputs f(x, y) with probability at least 1− δ on (x, y) and since it outputs f(x, y)

with probability at most δ on (w, z), then Πxy(T ) ≥ 1 − δ and Πwz(T ) ≤ δ. It follows that

V(Πxy, Πwz) ≥ 1 − 2δ.

Proposition 6.9 below, which connects the total variation distance and the Hellinger

distance and is proved in Section A, completes the proof.

Proposition 6.9. If P and Q are distributions on the same domain, then V(P, Q) ≤
h(P, Q)

√

2 − h2(P, Q).
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Next we turn to the proofs of Lemmas 6.3 and 6.4. We begin with a lemma that for-

mulates the rectangular structure of the distributions on the transcripts of a randomized

communication protocol. This is a probabilistic analog of the fundamental lemma of com-

munication complexity—the set of inputs that have the same transcript in a deterministic

communication protocol is a combinatorial rectangle.

Lemma 6.10. (1) Let Π be a two-player randomized communication protocol with input

set L ⊆ X ×Y; let T denote the set of possible transcripts of Π. There exist mappings

q1 : T × X → R, q2 : T × Y → R such that for every x ∈ X , y ∈ Y, and for every

transcript τ ∈ T ,

Pr[Π(x, y) = τ ] = q1(τ ; x) · q2(τ ; y).

(2) Let Π be a t-player randomized communication protocol with input set L ⊆ X = X1 ×
· · ·×Xt; let T denote the set of possible transcripts of Π. Let A, B be a partition of the

set of players into two non-empty sets; denote by XA and XB the projection of X to the

coordinates in A and in B, respectively. Then, there exist mappings qA : T ×XA → R,

qB : T ×XB → R, such that for every y ∈ XA, z ∈ XB, and for every transcript τ ∈ T ,

Pr[Π(y, z) = τ ] = qA(τ ;y) · qB(τ ; z).

Proof. First, we prove part (1). Recall that by our convention, Π is well-defined for every

pair (x, y) ∈ X ×Y , regardless of whether it is a legal input (i.e., belongs to L ⊆ X ×Y) or

not.

In the proof we use the following “rectangle” property of deterministic communication

complexity protocols (cf. [KN97], Chapter 1): for any possible transcript τ of a deterministic

communication protocol with input sets X and Y , the set of pairs on which the protocol’s

transcript is τ form a combinatorial rectangle; that is, a set of the form A×B where A ⊆ X
and B ⊆ Y .

In order to apply this property to randomized protocols, we note that a randomized

protocol can be viewed as a deterministic protocol if we augment the inputs of Alice and

Bob with their private random strings. If a and b denote, respectively, the private coin tosses

of Alice and Bob, under this view, the (“extended”) input of Alice is (x, a) and that of Bob

is (y, b).

For τ ∈ T , let A(τ) × B(τ) be the combinatorial rectangle that corresponds to the

transcript τ in the (extended, deterministic) protocol Π. That is, for all (ξ, α) ∈ A(τ) and

for all (η, β) ∈ B(τ) (and only for such pairs), Π((ξ, α)(η, β)) = τ . For each x ∈ X , define

A(τ, x) ⊆ A(τ) by A(τ, x) = {(ξ, α) ∈ A(τ) | ξ = x}, and define X (x) to be the set of all

pairs of the form (x, α). Similarly, define B(τ, y) and Y(y) for each y ∈ Y . Finally define

q1(τ ; x) = |A(τ, x)|/|X (x)| and q2(τ ; y) = |B(τ, y)|/|Y(y)|.
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Note that on input x, y, Alice chooses a pair (x, a) from X (x) uniformly at random, and

Bob chooses a pair (y, b) from Y(y) uniformly at random. For any τ ∈ T , the transcript of

Π would be τ if and only if (x, a) ∈ A(τ, x) and (y, b) ∈ B(τ, y). Since the choices of a and

b are independent, it follows that Pr[Π(x, y) = τ ] = q1(τ ; x) · q2(τ ; y).

The proof for part (2) is by a straightforward reduction to part (1), obtained by letting

Alice and Bob simulate the messages sent by the players in A and B, respectively.

We are now ready for Lemmas 6.3 and 6.4. As mentioned earlier, these are probabilistic

formulations of the familiar fact about deterministic communication complexity: if Π(x, y) =

τ = Π(x′, y′), then Π(x′, y) = τ = Π(x, y′).

Lemma 6.11 (Cut and paste lemma, Lemma 6.3 restated). For any randomized

protocol Π and for any x, x′ ∈ X and y, y′ ∈ Y, h(Πxy, Πx′y′) = h(Πxy′, Πx′y).

Proof.

1 − h2(Πxy, Πx′y′)

=
∑

τ

√

Pr[Π(x, y) = τ ] · Pr[Π(x′, y′) = τ ]

=
∑

τ

√

q1(τ ; x) · q2(τ ; y) · q1(τ ; x′) · q2(τ ; y′) (Lemma 6.10)

=
∑

τ

√

Pr[Π(x, y′) = τ ] · Pr[Π(x′, y) = τ ]

= 1 − h2(Πxy′ , Πx′y).

Lemma 6.12 (Pythagorean lemma, Lemma 6.4 restated). For any randomized pro-

tocol Π and for any x, x′ ∈ X and y, y′ ∈ Y, h2(Πxy, Πx′y)+h2(Πxy′ , Πx′y′) ≤ 2 h2(Πxy, Πx′y′).

Proof. Again using Lemma 6.10, we have

1

2

[(

1 − h2(Πxy, Πx′y)
)

+
(

1 − h2(Πxy′, Πx′y′)
)]

=
1

2

∑

τ

√

q1(τ ; x) · q2(τ ; y) · q1(τ ; x′) · q2(τ ; y) +
√

q1(τ ; x) · q2(τ ; y′) · q1(τ ; x′) · q2(τ ; y′)

=
∑

τ

q2(τ ; y) + q2(τ ; y′)

2

√

q1(τ ; x) · q1(τ ; x′)

≥
∑

τ

√

q2(τ ; y) · q2(τ ; y′)
√

q1(τ ; x) · q1(τ ; x′) (AM–GM inequality)

= 1 − h2(Πxy, Πx′y′).

We also formulate a special Markovian property for one-way protocols, which will be used

in the proof for the multi-party set-disjointness in Section 7.
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Lemma 6.13 (Markov property of one-way protocols). Let Π be a t-player one-way

randomized communication protocol with input set L ⊆ X = X1 × · · · × Xt; let T denote the

set of possible transcripts of Π. Let A = [1, k] and B = [k + 1, t] (1 ≤ k < t) be a partition

of the set of players. Denote by XA and XB the projection of X to the coordinates in A and

in B, respectively; similarly, denote by TA and TB the projection of T to the set of messages

sent by players in A and in B, respectively. Then, for each assignment y ∈ XA there exists

a distribution py on TA and for each assignment z ∈ XB there exists a probability transition

matrix Mz on TA ×TB, such that for every transcript τ = (τA, τB), where τA ∈ TA, τB ∈ TB,

Pr[Π(y, z) = τ ] = py(τA) · Mz(τA, τB).

Proof. Since Π is a one-way protocol, for any transcript τ = (τA, τB), τA depends only on the

inputs and private coins of players in A; τB depends only on τA and the inputs and private

coins of players in B. Thus, we can write Π(y, z) = (ΠA(y), ΠB(z, ΠA(y)), where ΠA and

ΠB are the messages sent by players in A and in B, respectively. Therefore,

Pr[Π(y, z) = (τA, τB)] = Pr[ΠA(y) = τA] · Pr[ΠB(z, τA) = τB | ΠA(y) = τA].

Define py to be the distribution on TA satisfied by ΠA(y). Since the coins of players in

A and players in B are independent, it follows that ΠA(y) and ΠB(z, τA) are independent.

We obtain: Pr[ΠB(z, τA) = τB | ΠA(y) = τA] = Pr[ΠB(z, τA) = τB]. Define Mz to be the

matrix whose τA-th row describes the distribution on TB satisfied by ΠB(z, τA). The lemma

follows.

Remark. Extending the above lemma to general protocols Π, it can be shown that for all

inputs (y, z), there exist a column-stochastic matrix My and a row-stochastic matrix Mz

such that Pr[Π(y, z) = τ ] = My(τA, τB) · Mz(τA, τB). This is a slightly stronger form of

Lemma 6.10.

7 Multi-party set-disjointness

Let disjn,t(x1, . . . ,xt) =
∨n

j=1

∧t
i=1 xi,j, where the xi’s are n-bit vectors. Thus, disjn,t is

or-decomposable, and the induced “primitive” functions are all andt—the t-bit and. The

legal inputs for andt are the all-zero 0, the all-one 1, and the standard unit vectors ei with

1 in the i-th position2.

2The definition of disjn,t also requires that 1 be assigned to at most one coordinate; this can be handled
via a simple modification to the direct sum paradigm and will not be described here.

20



www.manaraa.com

Theorem 7.1. For any 0 < δ < 1/4, and any 0 < ǫ < 1,

(1) Rδ(disjn,t) ≥ (1 − 2
√

δ) · n
t2

.

(2) R1-way
δ (disjn,t) ≥ ǫ2·ln2 2

8
· (1 − 2

√
δ) · n

t1+ǫ .

Proof. We will employ the direct sum paradigm. We define a distribution ν on the inputs

of andt as follows: let λ be the uniform distribution on [t], and let D ∼ λ. Conditioned on

D = i, ν is uniform on {0, ei}. It follows that µ = νn is a collapsing distribution for disjn,t.

Thus, all we need to prove is a lower bound on the conditional information complexity of

andt with respect to (ν, λ).

Let Π be any δ-error protocol that computes andt; to keep the notation simple we will

suppress any reference to the private randomness used in Π. We denote by U a random

input for andt chosen according to ν. The conditional information cost is now given by

I(U ; Π(U) | D) =
1

t

∑

i

I(U ; Π(U) | D = i). (3)

Notice that conditioned on D = i, U is uniformly distributed in {0, ei}, so Lemma 6.2

allows us passage to the Hellinger distance. Thus we have

I(U ; Π(U) | D) ≥ 1

t

t
∑

i=1

h2(Π0, Πei
).

Part (1) of Theorem 7.1 follows from Lemma 7.2 below, together with Proposition 6.5, which

implies that h(Π0, Π1) ≥ 1 − 2
√

δ. This completes the proof of Theorem 7.1, Part (1).

Lemma 7.2.
∑t

i=1 h2(Π0, Πei
) ≥ (1/t) h2(Π0, Π1).

Proof. For simplicity of exposition, we assume that t is a power of 2, and use a tree-induction

argument. Let T be a complete binary tree of height log t. We denote the nodes of T

uniquely by t-bit inputs of the form e[a,b], which is the characteristic vector of an integer

interval [a, b] ⊆ [t]. This is done inductively, as follows: the root is denoted by e[1,t]; for an

internal node e[a,b], its left child and right child are denoted by e[a,c] and e[c+1,b], respectively,

where c = ⌊a+b
2
⌋. It is easy to see that the root is denoted by the input 1 and the t leaves of

the tree are denoted by e1, . . . , et. The lemma thus follows from an inductive application of

the following claim.

Claim 7.3. Let u be any internal node in T and let v and w be its left child and right child,

respectively. Then, h2(Π0, Πu) ≤ 2 · (h2(Π0, Πv) + h2(Π0, Πw)).

Proof of Claim. Suppose u = e[a,b], for some a, b, so that v = e[a,c], and w = e[c+1,b], where

c = ⌊a+b
2
⌋. Let A denote the set of players [1, c] and B denote the set of players [c + 1, t].
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Let y be the projection of 0 on the coordinates in A and let y′ be the projection of u on the

coordinates in A. Similarly, let z, z′ be the projections of 0 and u on the coordinates in B,

respectively. Note that v = y′z and w = yz′.

The key step in the proof is an analog of the cut and paste lemma (Lemma 6.3), applied

to t-player protocols, implying that

h(Π0, Πu) = h(Πyz, Πy′z′) = h(Πyz′ , Πy′z) = h(Πw, Πv). (4)

The correctness of Equation 4 can be verified analogous to the proof of Lemma 6.3, using

part (2) of Lemma 6.10.

By the triangle inequality, h(Πv, Πw) ≤ h(Π0, Πv) + h(Π0, Πw). Therefore, h(Π0, Πu) ≤
h(Π0, Πv) + h(Π0, Πw). Applying the Cauchy–Schwarz inequality, the claim follows.

Proof of Theorem 7.1, part (2). For the one-way model, we are able to obtain stronger

bounds, by deriving the following stronger counterpart of Lemma 7.2:

Lemma 7.4. For any one-way protocol Π and for any 0 < ǫ < 1,

t
∑

i=1

h2(Π0, Πei
) ≥ (ln2 2)ǫ2

8 tǫ
· h2(Π0, Π1).

It is straightforward to see that Lemma 7.4, used in place of Lemma 7.2, completes the

proof of Theorem 7.1, part (2)

The proof of Lemma 7.4 has two main ideas. First is the fact that we will exploit the

Markovian structure of transcript distributions that arise in one-way protocols, captured by

Lemma 6.13. The second main idea is the use of generalizations of the Hellinger distance

known as Rényi divergences. We currently do not know how to apply these ideas to general

protocols, for example, using the extension of the Markovian property to general protocols,

referred to after Lemma 6.13.

Below we state and prove a weaker version of Lemma 7.4 that illustrates the use of Lemma

6.13. This proof is still based on the Hellinger distance; the proof via Rényi divergences is

technically more tedious, and is deferred to the Appendix.

Lemma 7.5. For any one-way protocol Π,
∑t

i=1 h2(Π0, Πei
) ≥ (1/tc) h2(Π0, Π1), where

c = log2(1 + 1√
2
) ≈ 0.77155.

Proof. In the proof, we carry out an induction similar to the proof of Lemma 7.2 on a

complete binary tree of height log t, and use the following stronger claim in place of Claim

7.3.
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Claim 7.6. Let u be any internal node in T and let v and w be its left child and right child,

respectively. Then, h2(Π0, Πu) ≤ (1 + 1/
√

2) (h2(Π0, Πv) + h2(Π0, Πw)).

Proof. Similar to the proof of Claim 7.3, suppose u = e[a,b], v = e[a,c], and w = e[c+1,b], where

c = ⌊a+b
2
⌋. Define the sets of players A, B and the input assignments y,y′, z, z′ as before.

Recall that 0 = yz, u = y′z′, v = y′z, and w = yz′.

For a probability vector p on Ω and a probability transition matrix M on Ω×Γ, let p◦M

denote the joint distribution on Ω×Γ where (p ◦M)(i, j) = p(i) ·M(i, j). Applying Lemma

6.13, we have Π0 = Πyz = py ◦ Mz, Πu = Πy′z′ = py′ ◦ Mz′ , Πv = Πy′z = py′ ◦ Mz, and

Πw = Πyz′ = py ◦ Mz′ . The claim now follows from the following property of the Hellinger

distance.

Lemma 7.7. Let p, q be probability distributions on Ω, and let M, N be probability transition

matrices on Ω × Γ, for some Ω and Γ. Then

h2(p ◦ M, q ◦ N) ≤
(

1 +
1√
2

)

· (h2(p ◦ M, q ◦ M) + h2(p ◦ M, p ◦ N)).

Proof. Let a, b be any two probability distributions on Ω, and C, D be any two probability

transition matrices on Ω × Γ. Let Ci and Di denote the i-th row of C and D, respectively

(note that the rows of C and D are distributions). We have:

h2(a ◦ C, b ◦ D) = 1 −
∑

i∈Ω,j∈Γ

√

aiCijbiDij = 1 −
∑

i∈Ω

√

aibi

∑

j∈Γ

√

CijDij

= 1 −
∑

i∈Ω

√

aibi(1 − h2(Ci, Di)) = h2(a, b) +
∑

i∈Ω

h2(Ci, Di)
√

aibi

Define βi to be the squared Hellinger distance between the i-th row of M and the i-th

row of N . Using the above observation, we can write the three (squared) Hellinger distances

as follows: h2(p ◦ M, q ◦ N) = h2(p, q) +
∑

i∈Ω βi
√

piqi, h2(p ◦ M, q ◦ M) = h2(p, q), and

h2(p ◦ M, p ◦ N) =
∑

i∈Ω piβi.

Set γ = 1/
√

2. After minor rearrangement, it suffices to prove:

∑

i∈Ω

βi(
√

piqi − (1 + γ)pi) ≤ γ h2(p, q) = γ

(

∑

i∈Ω

(

pi + qi

2

)

−√
piqi

)

.

We will prove the inequality pointwise, that is, for each i ∈ Ω. Since βi ≤ 1 and since the

i-th term in the right hand side is always non-negative, it is enough to show

√
piqi − (1 + γ)pi ≤ γ

((

pi + qi

2

)

−√
piqi

)

,

or pi(1 + 3γ/2) + qi(γ/2) − (1 + γ)
√

piqi ≥ 0, which is true since the LHS is the square of

the quantity (
√

pi(1 + 3γ/2) −
√

qi(γ/2)) (recall that γ = 1/
√

2).
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8 L∞ and Lp distances

In the L∞ promise problem, Alice and Bob are, respectively, given two n-dimensional vectors,

x and y from [0, m]n with the following promise: either |xi − yi| ≤ 1 for all i, or for some i,

|xi − yi| ≥ m. The function L∞(x,y) = 1 iff the latter case holds.

Theorem 8.1. For 0 < δ < 1/4,

Rδ(L∞) ≥
(

1 − 2
√

δ

4

)

· n

m2
.

Proof. Note that L∞ is or-decomposable, since L∞(x,y) =
∨

j dist(xj ,yj), where

dist(x, y) = 1, if |x − y| ≥ m and dist(x, y) = 0 if |x − y| ≤ 1.

We thus use the direct sum paradigm with the input distribution µ = νn. The random

variable (X, Y ) distributed according to ν is defined as follows. Let λ be the uniform distri-

bution on ([0, m]×{0, 1})\{(0, 1), (m, 0)}, and let D ∼ λ. If D = (d, 0), then X = d and Y is

uniformly distributed in {d, d+1}; if D = (d, 1), then Y = d and X is uniformly distributed

in {d − 1, d}. It is easy to see that λ partitions ν. Furthermore, since dist(x, y) = 0 for all

(x, y) generated according to ν, it follows µ is a collapsing distribution for L∞. The theorem

follows by applying Lemma 8.2 given below.

Lemma 8.2. For any 0 < δ < 1/4, ICν,δ(dist | λ) ≥
(

1−2
√

δ
4

)

· 1
m2 .

Proof. Let Π be any δ-error protocol for dist, and let Ud denote a random variable with

uniform distribution in {d, d + 1}. By expanding on values of D, it can be shown that

ICν,δ(Π | λ) =
1

2m

(

m−1
∑

d=0

I(Ud ; Π(d, Ud)) +

m
∑

d=1

I(Ud−1 ; Π(Ud−1, d))

)

.

Therefore,

ICν,δ(Π | λ)

≥ 1

2m

(

m−1
∑

d=0

h2(Πdd, Πd,d+1) +

m
∑

d=1

h2(Πd−1,d, Πdd)

)

(by Lemma 6.2)

≥ 1

4m2

(

m−1
∑

d=0

h(Πdd, Πd,d+1) +

m
∑

d=1

h(Πd−1,d, Πdd)

)2

(Cauchy–Schwarz)

≥ 1

4m2
h2(Π00, Πmm) (Triangle inequality)

We cannot directly bound h2(Π00, Πmm) from below, because dist is 0 on both inputs.

However, by Lemma 6.4, we have that h2(Π00, Πmm) ≥ 1
2
(h2(Π00, Πm0) + h2(Π0m, Πmm)),

which, by Proposition 6.5, is at least 1 − 2
√

δ.
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A Measures of information and statistical differences

Definition A.1 (Statistical distance measures). Let P and Q be two distributions

on the same probability space Ω. The total variation distance V, the Hellinger distance

h, the Kullback–Leibler divergence KL, the Jensen–Shannon divergence D, and the Rényi

divergence Dα (0 < α < 1) between P and Q are defined as follows:

V(P, Q) = 1
2

∑

ω∈Ω|P (ω)− Q(ω)| = maxΩ′⊆Ω|P (Ω′) − Q(Ω′)|

h(P, Q) = (1 −∑ω∈Ω

√

P (ω)Q(ω))
1

2 = (1
2

∑

ω∈Ω(
√

P (ω)−
√

Q(ω))2)
1

2

KL(P ‖ Q) =
∑

ω∈Ω P (ω) log P (ω)
Q(ω)

D(P, Q) = 1
2

(

KL(P ‖ P+Q
2

) + KL(Q ‖ P+Q
2

)
)

Dα(P, Q) = 1 −∑ω∈Ω P (ω)αQ(ω)1−α

While V(·, ·) and h(·, ·) are metrics, KL(· ‖ ·), D(·, ·), and Dα(·, ·) are not. However,

they are always non-negative and equal 0 if and only if P = Q. The Rényi divergence is a

generalization of the Hellinger distance: D 1

2

(P, Q) = h2(P, Q).

Proposition A.2 (Proposition 6.9 restated; [LY90]). If P and Q are distributions on

the same domain, then V(P, Q) ≤ h(P, Q)
√

2 − h2(P, Q).

Proposition A.3.

∀α < β,
α

β
Dβ(P, Q) ≤ Dα(P, Q) ≤ 1 − α

1 − β
Dβ(P, Q).

Proof. We use Hölder’s inequality (for vectors v, u and for p, q that satisfy 1/p + 1/q = 1,

|〈v, u〉| ≤ ‖v‖p · ‖u‖q) with p = β/α and q = β/(β − α):

1 − Dα(P, Q)

=
∑

ω

P (ω)αQ(ω)1−α =
∑

ω

P (ω)αQ(ω)α/β−α · Q(ω)1−α/β

≤
(

∑

ω

(

P (ω)αQ(ω)α/β−α
)β/α

)α/β

·
(

∑

ω

(

Q(ω)1−α/β
)β/(β−α)

)(β−α)/β

=

(

∑

ω

P (ω)βQ(ω)1−β

)α/β

·
(

∑

ω

Q(ω)

)(β−α)/β

= (1 − Dβ(P, Q))α/β .

We now use the following simple analytic claim:
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Claim A.4. For any 0 ≤ ǫ, δ ≤ 1 (excluding the case ǫ = 1 and δ = 0), (1 − ǫ)δ ≤ 1 − δǫ.

Proof. The cases δ = 0, 1 are trivial. So assume δ ∈ (0, 1) and consider the function f(ǫ) =

1−δǫ−(1−ǫ)δ. We need to show f is non-negative in the interval [0, 1]. Taking the derivative

of f , we have: f ′(ǫ) = δ(1/(1 − ǫ)1−δ − 1) ≥ 0, since 1 − ǫ ≤ 1 and 1 − δ > 0. Therefore,

f is non-decreasing in the interval [0, 1], implying its minimum is obtained at ǫ = 0. Since

f(0) = 0, we have that f(ǫ) ≥ 0 for all ǫ ∈ [0, 1].

Since both Dβ(P, Q) and α/β are in the interval [0, 1] (and α/β > 0), we obtain the left

inequality:

1 − Dα(P, Q) ≤ (1 − Dβ(P, Q))α/β ≤ 1 − α

β
· Dβ(P, Q).

For the other direction, note that Dβ(P, Q) = D1−β(Q, P ), by definition. Therefore, using

the first direction,

Dβ(P, Q) = D1−β(Q, P ) ≥ 1 − β

1 − α
D1−α(Q, P ) =

1 − β

1 − α
Dα(P, Q).

Proposition A.5 ([Lin91]). For distributions P and Q on the same domain, D(P, Q) ≥
h2(P, Q).

The next proposition is used crucially in all our proofs to rephrase mutual information

quantities in terms of the Jensen–Shannon divergence, which then allows us, via Proposition

A.5, the use of the Hellinger distance or the Rényi divergences.

Proposition A.6. Let φ(z1) and φ(z2) be two random variables. Let Z denote a random

variable with uniform distribution in {z1, z2}. Then, I(Z; φ(Z)) = D(φz1
, φz2

).

Proof. We start by stating three facts from information theory used in the proof. For two

distributions µ and ν, we denote by (µ, ν) their joint distribution, and by µ×ν their product

distribution (i.e., (µ× ν)(x, y) = µ(x) · ν(y)). The mutual information between two random

variables X and Y , (X, Y ) ∼ (µ, ν), has the following characterization in terms of the KL

divergence (cf. [CT91]):

I(X ; Y ) = KL((µ, ν) ‖ µ × ν).

For a distribution µ and an event A, we denote by µ|A the conditional distribution of µ

given the event A. For joint distributions µ = (µX , µY ) and ν = (νX , νY ) on X × Y , let

(X, Y ) ∼ µ and (W, Z) ∼ ν. The conditional KL divergence between µX and νX given µY

and νY is defined as:

KL(µX |µY ‖ νX |νY )
def
=

∑

y∈Y
µY (y) · KL(µX |{Y = y} ‖ νX |{Z = y}).
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The chain rule for KL divergence is:

KL(µ ‖ ν) = KL(µY ‖ νY ) + KL(µX |µY ‖ νX |νY ).

We next use the above facts to prove the proposition. Let µ denote the distribution of Z

(that is, µ is uniform on {z1, z2}). Note that φ(Z) is distributed according to φ(µ) and that

φ(µ) = (φz1
+ φz2

)/2. Thus,

I(Z ; φ(Z)) = KL((µ, φ(µ)) ‖ µ × φ(µ))

(KL divergence characterization of mutual information)

= KL(µ ‖ µ) + KL(φ(µ)|µ ‖ φ(µ))

(Chain rule for KL divergence)

= 0 +
1

2
KL(φ(µ)|{Z = z1} ‖ φ(µ)) +

1

2
KL(φ(µ)|{Z = z2} ‖ φ(µ))

(Definition of conditional KL divergence)

=
1

2
KL(φz1

‖ φ(µ)) +
1

2
KL(φz2

‖ φ(µ))

(Independence of φ(z1) and φ(z2) of Z)

= D(φz1
, φz2

)

Finally, we state the lemma that we use in the proofs of information complexity lower

bounds of primitive functions; the lemma follows directly from Propositions A.6 and A.5.

Lemma A.7 (Lemma 6.2 restated). Let φ(z1) and φ(z2) be two random variables. Let

Z denote a random variable with uniform distribution in {z1, z2}. Then, I(Z; φ(Z)) ≥
h2(φz1

, φz2
).

B Proof of Lemma 7.4

Lemma B.1 (Lemma 7.4 restated). For any one-way protocol Π and for any 0 < ǫ < 1,

t
∑

i=1

h2(Π0, Πei
) ≥ (ln2 2)ǫ2

8 tǫ
· h2(Π0, Π1).

Proof. In the proof we employ Rényi divergences Dα [Rén60] (see Section A). Recall that

when α = 1/2, D1/2(P, Q) = h2(P, Q), the squared Hellinger distance; the following proof is

a technically more tedious generalization of the proof of Lemma 7.5. By Proposition A.3,

we have for 1/2 ≤ α < 1 and distributions P and Q on the same domain,

1

2α
Dα(P, Q) ≤ h2(P, Q) ≤ 1

2(1 − α)
Dα(P, Q). (5)
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To prove Lemma 7.4, we fix α = α(ǫ), which will be chosen later. Using Equation 5, we

have:
∑t

i=1 h2(Π0, Πei
) ≥ 1

2α
·∑t

i=1 Dα(Π0, Πei
) and Dα(Π0, Π1) ≥ 2(1 − α) · h2(Π0, Π1). It

would thus suffice to prove the following counterpart of Lemma 7.4 for the Rényi divergence.

Lemma B.2. For any one-way protocol Π, for any 0 < ǫ < 1, if α = 1 − γ2/(4(1 + γ)),

where where γ = 2ǫ − 1, then
∑t

i=1 Dα(Π0, Πei
) ≥ (1/tǫ) Dα(Π0, Π1).

Assuming Lemma B.2, we will complete the proof of Lemma 7.4. By Equation (5),

t
∑

i=1

h2(Π0, Πei
) ≥ 1

2α
·

t
∑

i=1

Dα(Π0, Πei
).

By Lemma B.2, the latter is at least (1/2α) · (1/tǫ) · Dα(Π0, Π1). Using Equation (5) once

more, the latter is at least ((1 − α)/α) · (1/tǫ) · h2(Π0, Π1). By our choice of α,

1 − α

α
=

1

α
− 1 ≥ γ2

4(1 + γ)
≥ γ2

8
.

Since γ = 2ǫ − 1 ≥ ǫ ln 2, we have (1 − α)/α ≥ (ǫ2 ln2 2)/8, and Lemma 7.4 follows.

Proof of Lemma B.2. The proof goes along the same lines of the proof of Lemma 7.2, and

follows from the following claim (the analog of Claim 7.3 with Hellinger distance replaced

by the Rényi divergence).

Claim B.3. Let u be any internal node in T and let v and w be its left child and right child,

respectively. Then, Dα(Π0, Πu) ≤ (1 + γ) · (Dα(Π0, Πv) + Dα(Π0, Πw)).

Proof of Claim. Similar to the proof of Claim 7.3, suppose u = e[a,b], v = e[a,c], and w =

e[c+1,b], where c = ⌊a+b
2
⌋. Define the sets of players A, B and the input assignments y,y′, z, z′

as before. Recall that 0 = yz, u = y′z′, v = y′z, and w = yz′.

For a probability vector p on Ω and a probability transition matrix M on Ω × Γ, let

p ◦ M denote the joint distribution on Ω × Γ where (p ◦ M)(i, j) = p(i) · M(i, j). Applying

Lemma 6.13, we have Π0 = Πyz = py ◦ Mz, Πu = Πy′z′ = py′ ◦ Mz′ , Πv = Πy′z = py′ ◦ Mz,

and Πw = Πyz′ = py ◦ Mz′ . The claim now follows from the following property of the Rényi

divergence, whose proof uses convexity and analytical arguments.

Lemma B.4. Let p, q be probability distributions on Ω, and let M, N be probability transition

matrices on Ω × Γ, for some Ω and Γ. For any γ > 0, if α ≥ 1 − γ2/(4(1 + γ)), then

Dα(p ◦ M, q ◦ N) ≤ (1 + γ) · (Dα(p ◦ M, q ◦ M) + Dα(p ◦ M, p ◦ N)).
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Proof of Lemma B.4. We define βi to be the Rényi α-divergence between the i-th row of M

and the i-th row of N . Similar to the proof of Lemma 7.5, we can rewrite the three Rényi

divergences as: Dα(p ◦ M, q ◦ N) = Dα(p, q) +
∑

i∈Ω pα
i q1−α

i βi, Dα(p ◦ M, q ◦ M) = Dα(p, q),

and Dα(p ◦ M, p ◦ N) =
∑

i∈Ω piβi. Thus, what we need to prove is:

Dα(p, q) +
∑

i∈Ω

pα
i q1−α

i βi ≤ (1 + γ) ·
(

Dα(p, q) +
∑

i∈Ω

piβi

)

⇐⇒
∑

i∈Ω

pα
i q1−α

i βi ≤ γ · Dα(p, q) + (1 + γ)

(

∑

i∈Ω

piβi

)

⇐⇒
∑

i∈Ω

βi

(

pα
i q1−α

i − (1 + γ)pi

)

≤ γ · Dα(p, q).

Let us denote by Ω1 the set of all i ∈ Ω, for which pα
i q1−α

i ≥ (1 + γ)pi. Let Ω2 = Ω \ Ω1.

Since βi ≤ 1, then

∑

i∈Ω

βi

(

pα
i q1−α

i − (1 + γ)pi

)

≤
∑

i∈Ω1

pα
i q1−α

i − (1 + γ)pi.

Thus, it suffices to prove:

∑

i∈Ω1

pα
i q1−α

i − (1 + γ)pi ≤ γ · Dα(p, q).

Substituting Dα(p, q) = 1−∑i∈Ω pα
i q1−α

i in the RHS of the above inequality and rearranging

the terms, we need to show that

∑

i∈Ω1

(1 + γ)pα
i q1−α

i +
∑

i∈Ω2

γpα
i q1−α

i −
∑

i∈Ω1

(1 + γ)pi ≤ γ. (6)

We note the following convexity property of the function f(x, y) = xαy1−α:

Claim B.5. For any non-negative numbers x1, . . . , xn, y1, . . . , yn,

n
∑

i=1

xα
i y1−α

i ≤
(

n
∑

i=1

xi

)α

·
(

n
∑

i=1

yi

)1−α

.

The proof follows directly from an application of Hölder’s inequality.

Define z =
∑

i∈Ω1
pi and w =

∑

i∈Ω1
qi. Applying the above Claim B.5 in Equation 6, it

suffices to prove the following:

(1 + γ) · zαw1−α + γ · (1 − z)α(1 − w)1−α − (1 + γ)z − γ ≤ 0. (7)
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Define fα(z, w) to be the left-hand-side of (7). For any given value of z we will maximize

fα(z, w) as a function of w and show that this maximum is less than 0 for an appropriately

chosen α. For simplicity of notation, we denote: a = (1+ γ)zα, b = γ(1− z)α and δ = 1−α.

We thus have: fα,z(w) = awδ + b(1 − w)δ − (1 + γ)z − γ.

dfα,z

dw
= aδwδ−1 − bδ(1 − w)δ−1.

Thus, the extremal point is at:

w∗ =
a1/(1−δ)

a1/(1−δ) + b1/(1−δ)
.

This point is a maximum in the interval [0, 1], since

d2fα,z

dw2
= aδ(δ − 1)wδ−2 + bδ(δ − 1)(1 − w)δ−2 < 0.

Thus the value of the maximum point is:

fα,z(w
∗) =

a1/(1−δ)

(a1/(1−δ) + b1/(1−δ))
δ

+
b1/(1−δ)

(a1/(1−δ) + b1/(1−δ))
δ
− (1 + γ)z − γ

=
(

a1/(1−δ) + b1/(1−δ)
)1−δ − (1 + γ)z − γ

=
(

(1 + γ)1/αz + γ1/α(1 − z)
)α − (1 + γ)z − γ.

We want this maximum to be non-positive for every z ∈ [0, 1]. That is,

(

(1 + γ)1/αz + γ1/α(1 − z)
)α ≤ (1 + γ)z + γ

⇐⇒ ((1 + γ)z + γ)1/α − (1 + γ)1/αz − γ1/α(1 − z) ≥ 0. (8)

Let gα(z) be the left-hand-side of (8), and for simplicity of notation, let ℓ = 1/α. We would

like to show that for an appropriate choice of α, gα(z) ≥ 0 for all z ∈ [0, 1]. Note that

gα(0) = 0. Thus, it suffices to show that g is non-decreasing in the interval [0, 1].

g′(z) = ℓ(1 + γ) ((1 + γ)z + γ)ℓ−1 − (1 + γ)ℓ + γℓ ≥ ℓ(1 + γ)γℓ−1 − (1 + γ)ℓ + γℓ,

where the last inequality follows from the fact z ≥ 0. Thus g would be non-decreasing if:

ℓ(1 + γ)γℓ−1 − (1 + γ)ℓ + γℓ ≥ 0 ⇐⇒ ℓ

(

γ

1 + γ

)ℓ−1

− 1 +

(

γ

1 + γ

)ℓ

≥ 0.

Write η = γ/(1 + γ). Note that 0 < η < 1. We thus need to prove:

ηℓ + ℓηℓ−1 − 1 ≥ 0 ⇐⇒ ηℓ−1 (η + ℓ) − 1 ≥ 0

⇐= ηℓ−1 (1 + η) − 1 ≥ 0 ⇐⇒ ηℓ−1 ≥ 1

1 + η
.
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Since η < 1, 1/(1 + η) ≤ e−η/2. Thus it suffices that:

ηℓ−1 ≥ e−η/2 ⇐⇒ ℓ − 1 ≤ η

2 ln(1/η)
.

Therefore, we need α = 1/ℓ to satisfy

α ≥ 1

1 + η
2 ln(1/η)

.

Thus, it suffices that

α ≥ 1 − η

4 ln(1/η)
= 1 − γ

4(1 + γ) ln((1 + γ)/γ)
.

And for the last inequality to hold it suffices that

α ≥ 1 − γ2

4(1 + γ)
.
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